

David Burch, Principal Planner,
Bay Area Air Quality Management District
Urban Heat Island Conference
September 21, 2009

Presentation Overview

- Profile of Bay Area AQMD
- Multi-pollutant planning
- Control Strategy for Bay Area
 2009 Clean Air Plan (CAP)
- Role of UHI Mitigation in CAP
- UHI data to help frame policy

Bay Area AQMD Profile

- Regional agency responsible for AQ in Bay Area (we're not the California Air Resources Board)
- Governing board made up of elected officials from all 9 counties
- 100+ cities with > 7 million population
- Regulate emissions from stationary sources
- Develop air quality plans to attain state & federal standards

BAAQMD Mission

Two fundamental goals:

- Protect Air Quality
- Protect Climate

These goals are closely related

Higher temperatures will exacerbate AQ problems:

- more potent ozone formation
- higher evaporative emissions of VOCs
- increased emissions from power plants

Bay Area 2009 BAAQMD Climate Protection Program

- Board adopted climate policy in 2005
- Incorporated climate protection into **BAAQMD** mission statement
- First air district to compile regional GHG emissions inventory
- Adopted GHG fee on stationary sources
- Climate grant program to support local efforts
- Complement ARB's climate scoping plan 5

Benefits of Clean Air

Good air quality provides a range of benefits:

- Ecosystem protection
- Agricultural production
- Economic benefits: tourism, property values
- Quality of life
- Protect public health

Air Quality → Health

4 key steps

1) Δ Emissions of each pollutant

2) Ambient Concentrations

3) A Population Exposure

4) Δ Health Effects

Traditional AQ Planning

- Develop AQ plan to address a single pollutant
- Focus on reducing emissions & ambient concentrations (Steps 1 & 2 previous slide)
- AQ stds expressed as ambient concentrations
 - easy to measure
- But traditional AQ planning does not consider :

Innovative Aspects of 2009 CAP

Develop integrated **multi-pollutant** plan to reduce:

- ozone precursors (ROG & NOx)
- direct particulate matter (PM) & PM precursors
- key air toxics
- key greenhouse gases ("Kyoto 6")
- Protect public health, both at regional scale
 & in communities most heavily impacted by pollution

Multi-Pollutant Planning

- More holistic approach to AQ planning
- Conceptual groundwork:
 National Research Council (2004) & US EPA
- EPA pilot efforts under way in 4 states / areas
- Voluntary effort on the part of BAAQMD
- No guidelines available as yet:
 - we're on the cutting edge

Multi-Pollutant Planning

MP planning makes sense, but more complex

- Policy challenges:
 - - Where to draw the line?
- Technical challenges:
 - Need inventory data & emission factors
 - AQ modeling for ozone, PM & air toxics
 - How to compare the various pollutants?

Multi-Pollutant Evaluation Method (MPEM)

Used our technical data & tools to develop MPEM to help analyze control measures:

- MPEM based on the 4 steps outlined above
- Evaluate control measures in order to:
 - Optimize co-benefits across pollutants
 - Minimize trade-offs
- Identify control measures that provide greatest overall health & climate protection benefit

Overview of CAP Control Strategy

57 control measures:

- Stationary sources measures (19)
- Mobile sources measures (10)
- Transportation control measures (18)
- Land use & local impacts measures (6)
- Energy & climate measures (4)

Energy & Climate Measures

- ECM 1: Energy Efficiency
 - promote green building codes &
 - practices
- ECM 2: Renewable Energy
 - promote solar power
 - & other renewables
- ECM 3: Urban heat islands
 - cool roofing & cool paving
- ECM 4: Tree-Planting
 - promote planting of low VOC emitting trees

Heat Island Control Measure

- Promote cool roofing and paving through model ordinances that cities can adopt
- Provide training for local agencies re: cool roofing and paving technologies & benefits
- Use policy levers to encourage cool strategies as GHG offsets in new development projects

UHI Policy Needs

UHI makes sense conceptually, but need to quantify GHG reductions & other benefits

Data gaps:

- electricity saving per square meter of cool roofs & cool paving installed
- evaporative emission reductions from cool paving
- square meters of rooftops & parking lots in the Bay Area

Closing Thoughts

- We need fresh thinking & new strategies to address today's AQ & climate challenges
- MPEM integrates our 3 key objectives:
 - addressing multiple air pollutants
 - protecting public health
 - reducing GHGs & protecting climate

Broad support for the MP planning concept

Bay Area 2009 CAP will break new

Bay Area 2009 Clean Air Plan website:

http://www.baaqmd.gov/Divisions/Planni ng-and-Research/Plans/Clean-Air-Plans.aspx

David Burch: DBurch@BAAQMD.gov

Clean Air Plan Stages of MPEM Analysis

Ozone, PM, Toxics

1) **\Delta Emissions**

2) \(\Delta \text{Concentrations} \)

3) **\Delta Exposure**

4) ΔHealth Effects

5) Δ\$Health Benefits

GHGs

(Kyoto 6 – CO2-e)

1) ΔEmissions

5) Δ\$Social Benefits

Clean A Prollutants & Effects considered

Ambient Pollutant	Effect	
PM2.5	Range of health effects	
Ozone	Range of health effects	
Toxics: DPM, benzene, 1,3- butadiene, acetaldehyde, formaldehyde	Cancer	
Greenhouse gases (GHGs)	Health, Environment & Economic Effects 20	

á	Category	Emitted Pollutants		Ambient Pollutants
	TOXICS	Benzene		Benzene
8		1,3-Butadiene		1,3-Butadiene
		Formaldehyde		Formaldehyde
		Acetaldehyde		Acetaldehyde
	OZONE	ROG		Ozone
		NOx		
	PM2.5	Ammonia		
		NOx		Ammonium Nitrate
		ROG		
		Ammonia _		
		SO ₂		Ammonium Sulfate
		Sulfate		
		Carbonaceous PM2.5	\rightarrow	Carbonaceous PM2.5

Economic Valuation: GHGs

- Value of reductions = a dollar value per ton of CO2 equivalent reduced
- We're concerned about social cost, not market price
- GHG valuation is complicated:
 - Global in scale
 - Wide range of effects & costs (not just health)
 - Effects of today's emissions will be felt far into the future. How to value future benefits in current \$\$?
- We've chosen a value of \$28 per ton of CO2-e based on meta-study by Richard Tol (2005/2008)

MPEM caveats / limitations

 Does <u>not</u> include all pollutants: only a subset of criteria pollutants, toxics & GHGs

Does not fully capture all health effects:

- only health effects that are well-documented
- no synergistic interactions among pollutants
- does not consider downwind benefits (beyond Bay Area)
- Consider other non-air quality benefits
- MPEM is Bay Area-specific
- Need to strengthen MPEM technical foundation